The DNA binding properties of Saccharomyces cerevisiae Rad51 protein.
نویسندگان
چکیده
Saccharomyces cerevisiae Rad51 protein is the paradigm for eukaryotic ATP-dependent DNA strand exchange proteins. To explain some of the unique characteristics of DNA strand exchange promoted by Rad51 protein, when compared with its prokaryotic homologue the Escherichia coli RecA protein, we analyzed the DNA binding properties of the Rad51 protein. Rad51 protein binds both single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) in an ATP- and Mg2+-dependent manner, over a wide range of pH, with an apparent binding stoichiometry of approximately 1 protein monomer per 4 (+/-1) nucleotides or base pairs, respectively. Only dATP and adenosine 5'-gamma-(thiotriphosphate) (ATPgammaS) can substitute for ATP, but binding in the presence of ATPgammaS requires more than a 5-fold stoichiometric excess of protein. Without nucleotide cofactor, Rad51 protein binds both ssDNA and dsDNA but only at pH values lower than 6.8; in this case, the apparent binding stoichiometry covers the range of 1 protein monomer per 6-9 nucleotides or base pairs. Therefore, Rad51 protein displays two distinct modes of DNA binding. These binding modes are not inter-convertible; however, their initial selection is governed by ATP binding. On the basis of these DNA binding properties, we conclude that the main reason for the low efficiency of the DNA strand exchange promoted by Rad51 protein in vitro is its enhanced dsDNA-binding ability, which inhibits both the presynaptic and synaptic phases of the DNA strand exchange reaction as follows: during presynapsis, Rad51 protein interacts with and stabilizes secondary structures in ssDNA thereby inhibiting formation of a contiguous nucleoprotein filament; during synapsis, Rad51 protein inactivates the homologous dsDNA partner by directly binding to it.
منابع مشابه
The N-terminal DNA-binding domain of Rad52 promotes RAD51-independent recombination in Saccharomyces cerevisiae.
In Saccharomyces cerevisiae, the Rad52 protein plays a role in both RAD51-dependent and RAD51-independent recombination pathways. We characterized a rad52 mutant, rad52-329, which lacks the C-terminal Rad51-interacting domain, and studied its role in RAD51-independent recombination. The rad52-329 mutant is completely defective in mating-type switching, but partially proficient in recombination ...
متن کاملFunctional analyses of the C-terminal half of the Saccharomyces cerevisiae Rad52 protein
The Saccharomyces cerevisiae Rad52 protein is essential for efficient homologous recombination (HR). An important role of Rad52 in HR is the loading of Rad51 onto replication protein A-coated single-stranded DNA (ssDNA), which is referred to as the recombination mediator activity. In vitro, Rad52 displays additional activities, including self-association, DNA binding and ssDNA annealing. Althou...
متن کاملSaccharomyces cerevisiae Dmc1 protein promotes renaturation of single-strand DNA (ssDNA) and assimilation of ssDNA into homologous super-coiled duplex DNA.
Dmc1 and Rad51 are eukaryotic RecA homologues that are involved in meiotic recombination. The expression of Dmc1 is limited to meiosis, whereas Rad51 is expressed in mitosis and meiosis. Dmc1 and Rad51 have unique and overlapping functions during meiotic recombination. Here we report the purification of the Dmc1 protein from the budding yeast Saccharomyces cerevisiae and present basic character...
متن کاملHeteroduplex joint formation by a stoichiometric complex of Rad51 and Rad52 of Saccharomyces cerevisiae.
Both Rad51 and Rad52 are required for homologous genetic recombination in Saccharomyces cerevisiae. Rad51 promotes heteroduplex joint formation, a general step in homologous recombination. Rad52 facilitates the binding of Rad51 to replication protein A (RPA)-coated single-stranded DNA. The requirement of RPA can be avoided in vitro, if the single-stranded DNA is short. Using short single-strand...
متن کاملLoop 2 in Saccharomyces cerevisiae Rad51 protein regulates filament formation and ATPase activity
Previous studies showed that the K342E substitution in the Saccharomyces cerevisiae Rad51 protein increases the interaction with Rad54 protein in the two-hybrid system, leads to increased sensitivity to the alkylating agent MMS and hyper-recombination in an oligonucleotide-mediated gene targeting assay. K342 localizes in loop 2, a region of Rad51 whose function is not well understood. Here, we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 274 5 شماره
صفحات -
تاریخ انتشار 1999